Abstract

Damage diagnosis has been a challenging inverse problem in structural health monitoring. The main difficulty is characterizing the unknown relation between the measurements and damage patterns (i.e., damage indicator selection). Such damage indicators would ideally be able to identify the existence, location, and severity of damage. Therefore, this procedure requires complex data processing algorithms and dense sensor arrays, which brings computational intensity with it. To address this limitation, this paper introduces convolutional neural network (CNN), which is one of the major breakthroughs in image recognition, to the damage detection and localization problem. The CNN technique has the ability to discover abstract features and complex classifier boundaries that are able to distinguish various attributes of the problem. In this paper, a CNN topology was designed to classify simulated damaged and healthy cases and localize the damage when it exists. The performance of the proposed technique was evaluated through the finite-element simulations of undamaged and damaged structural connections. Samples were trained by using strain distributions as a consequence of various loads with several different crack scenarios. Completely new damage setups were introduced to the model during the testing process. Based on the findings of the proposed study, the damage diagnosis and localization were achieved with high accuracy, robustness, and computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.