Abstract

This paper explores the use of innovative kernels based on syntactic and semantic structures for a target relation extraction task. Syntax is derived from constituent and dependency parse trees whereas semantics concerns to entity types and lexical sequences. We investigate the effectiveness of such representations in the automated relation extraction from texts. We process the above data by means of Support Vector Machines along with the syntactic tree, the partial tree and the word sequence kernels. Our study on the ACE 2004 corpus illustrates that the combination of the above kernels achieves high effectiveness and significantly improves the current state-of-the-art.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.