Abstract

Microalgae are one of the promising feedstocks for biorefinery, contributing significantly to net-zero emissions through carbon capture and utilization. However, the disposal of microalgal byproducts from the manufacturing process causes additional environmental pollution, thus, a new application strategy is required. In this study, the Tetraselmis suecica byproduct from the carotenoid extraction process was carbonized and converted into biochar. The converted biochar was proved to be nitrogen-doped biochar (NDB), up to 4.69%, with a specific surface area of 206.59 m2/g and was used as an electrode for a supercapacitor. The NDB electrode (NDB-E) in half-cell showed a maximum specific capacitance of 191 F/g. In a full-cell test, the NDB-E exhibited a high energy density of 7.396 Wh/kg and a high-power density of 18,100 W/kg, and maintained specific capacity of 95.5% after charge and discharge of 10,000 cycles. In conclusion, our study demonstrated that the carotenoid-extracted microalgal byproducts are a useful resource for the supercapacitor production. This approach is the first to convert T. suecica into active materials for supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.