Abstract

We consider the problem of dynamically reallocating (or re-routing) m weighted tasks among a set of n uniform resources (one may think of the tasks as selfish players). We assume an arbitrary initial placement of tasks, and we study the performance of distributed, natural reallocation algorithms. We are interested in the time it takes the system to converge to an equilibrium (or get close to an equilibrium). Our main contributions are (i) a modification of the protocol in 2006 that yields faster convergence to equilibrium, together with a matching lower bound, and (ii) a non-trivial extension to weighted tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.