Abstract

This article is devoted to the analysis of the convergence rates of several numerical approximation schemes for linear and nonlinear Schrödinger equations on the real line. Recently, the authors have introduced viscous and two-grid numerical approximation schemes that mimic at the discrete level the so-called Strichartz dispersive estimates of the continuous Schrödinger equation. This allows to guarantee the convergence of numerical approximations for initial data in L2(R), a fact that cannot be proved in the nonlinear setting for standard conservative schemes unless more regularity of the initial data is assumed. In the present article we obtain explicit convergence rates and prove that dispersive schemes fulfilling the Strichartz estimates are better behaved for Hs(R) data if 0<s<1/2. Indeed, while dispersive schemes ensure a polynomial convergence rate, non-dispersive ones only yield logarithmic ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.