Abstract
In this paper, the augmented Lagrangian SQP method is considered for the numerical solution of optimization problems with equality constraints. The problem is formulated in a Hilbert space setting. Since the augmented Lagrangian SQP method is a type of Newton method for the nonlinear system of necessary optimality conditions, it is conceivable that q-quadratic convergence can be shown to hold locally in the pair (x, λ). Our interest lies in the convergence of the variable x alone. We improve convergence estimates for the Newton multiplier update which does not satisfy the same convergence properties in x as for example the least-square multiplier update. We discuss these updates in the context of parameter identification problems. Furthermore, we extend the convergence results to inexact augmented Lagrangian methods. Numerical results for a control problem are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.