Abstract

Inspired by numerical studies of the aggregation equation, we study the effect of regularization on nonlocal interaction energies. We consider energies defined via a repulsive-attractive interaction kernel, regularized by convolution with a mollifier. We prove that, with respect to the 2-Wasserstein metric, the regularized energies $\Gamma$-converge to the unregularized energy and minimizers converge to minimizers. We then apply our results to prove $\Gamma$-convergence of the gradient flows, when restricted to the space of measures with bounded density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.