Abstract

We consider a game-theoretic model of information retrieval with strategic authors. We examine two different utility schemes: authors who aim at maximizing exposure and authors who want to maximize active selection of their content (i.e., the number of clicks). We introduce the study of author learning dynamics in such contexts. We prove that under the probability ranking principle (PRP), which forms the basis of the current state-of-the-art ranking methods, any betterresponse learning dynamics converges to a pure Nash equilibrium. We also show that other ranking methods induce a strategic environment under which such a convergence may not occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.