Abstract

In this paper we present sufficient conditions for convergence of projection and fixed-point algorithms used to compute dynamic user equilibrium with elastic travel demand (E-DUE). The assumption of strongly monotone increasing path delay operators is not needed. In its place, we assume path delay operators are merely weakly monotone increasing, a property assured by Lipschitz continuity, while inverse demand functions are strongly monotone decreasing. Lipschitz continuity of path delay is a very mild regularity condition. As such, nonmonotone delay operators may be weakly monotone increasing and satisfy our convergence criteria, provided inverse demand functions are strongly monotone decreasing. We illustrate convergence for nonmonotone path delays via a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.