Abstract
In this note, we prove an existence and uniqueness result of solution for stochastic differential delay equations with hereditary drift driven by a fractional Brownian motion with Hurst parameter H > 1/2. Then, we show that, when the delay goes to zero, the solutions to these equations converge, almost surely and in L p , to the solution for the equation without delay. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann–Stieltjes integral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.