Abstract
This paper presents a reinforcement learning algorithm for solving infinite horizon Markov Decision Processes under the expected total discounted reward criterion when both the state and action spaces are continuous. This algorithm is based on Watkins' Q-learning, but uses Nadaraya-Watson kernel smoothing to generalize knowledge to unvisited states. As expected, continuity conditions must be imposed on the mean rewards and transition probabilities. Using results from kernel regression theory, this algorithm is proven capable of producing a Q-value function estimate that is uniformly within an arbitrary tolerance of the true Q-value function with probability one. The algorithm is then applied to an example problem to empirically show convergence as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.