Abstract

In this paper, we thoroughly investigate various aspects of economic model predictive control with average constraints, i.e., constraints on average values of state and input variables. In particular, we first show that a certain time-varying output constraint has to be included into the MPC problem formulation in order to ensure fulfillment of these average constraints. Optimizing a general (possibly economic) performance criterion may result in a non-converging behavior of the corresponding closed-loop system. While such a behavior might be acceptable in some cases, it may be undesirable for other types of applications. Hence as a second contribution, we provide a Lyapunov-like analysis to conclude that indeed asymptotic convergence to the optimal steady-state follows if the system satisfies a certain dissipativity condition. Finally, for the case that this dissipativity property is not satisfied but still a convergent behavior of the closed-loop is required, we examine two different methods how convergence can be enforced within an economic MPC setup by imposing additional average constraints on the system. In the first method, an additional average constraint is defined which results in the system being dissipative, while the second consists of imposing an additional even zero-moment average constraint. We illustrate our results with various examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.