Abstract

The advanced mean value (AMV) iterative scheme is commonly used to evaluate probabilistic constraints in the performance measure approach (PMA) for probabilistic structural design optimization (PSDO). However, the iterative procedure of PSDO may fail to converge. In this article, the chaotic dynamics theory is suggested to investigate and attack the non-convergence difficulties of PMA-based PSDO. Essentially, the AMV iterative formula forms a discrete dynamical system with control parameters. If the AMV iterative sequences present the numerical instabilities of periodic oscillation, bifurcation, and even chaos in some control parameter interval, then the outer optimization loop in PSDO cannot converge and acquire the correct optimal design. Furthermore, the stability transformation method (STM) of chaos feedback control is applied to perform the convergence control of AMV, in order to capture the desired fixed points in the whole control parameter interval. Meanwhile, PSDO is solved by the approaches of PMA two-level and PMA with the sequential approximate programming (SAP)—PMA with SAP. Numerical results of several examples illustrate that STM can smoothly overcome the convergence failure of PSDO resulting from the periodic oscillation, bifurcation, and chaotic solutions of AMV iterative procedure for evaluating the probabilistic constraints. Moreover, the probabilistic optimization with uniform random variables, which is widely recognized as a highly nonlinear and fairly difficult problem, can be attacked through introducing the strategy of chaos control. In addition, the approach of PMA with SAP combining with STM is quite effective and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.