Abstract

Efficient and unconditionally stable high order time marching schemes are very important but not easy to construct for nonlinear phase dynamics. In this paper, we propose and analysis an efficient stabilized linear Crank-Nicolson scheme for the Cahn-Hilliard equation with provable unconditional stability. In this scheme the nonlinear bulk force are treated explicitly with two second-order linear stabilization terms. The semi-discretized equation is a linear elliptic system with constant coefficients, thus robust and efficient solution procedures are guaranteed. Rigorous error analysis show that, when the time step-size is small enough, the scheme is second order accurate in time with aprefactor controlled by some lower degree polynomial of $1/\varepsilon$. Here $\varepsilon$ is the interface thickness parameter. Numerical results are presented to verify the accuracy and efficiency of the scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.