Abstract

Membrane technology is becoming more important for CO2 separation from natural gas in the new era due to its process simplicity, relative ease of operation and control, compact, and easy to scale up as compared with conventional processes. Conventional processes such as absorption and adsorption for CO2 separation from natural gas are generally more energy demanding and costly for both operation and maintenance. Polymeric membranes are the current commercial membranes used for CO2 separation from natural gas. However, polymeric membranes possess drawbacks such as low permeability and selectivity, plasticization at high temperatures, as well as insufficient thermal and chemical stability. The shortcomings of commercial polymeric membranes have motivated researchers to opt for other alternatives, especially inorganic membranes due to their higher thermal stability, good chemical resistance to solvents, high mechanical strength and long lifetime. Surface modifications can be utilized in inorganic membranes to further enhance the selectivity, permeability or catalytic activities of the membrane. This paper is to provide a comprehensive review on gas separation, comparing membrane technology with other conventional methods of recovering CO2 from natural gas, challenges of current commercial polymeric membranes and inorganic membranes for CO2 removal and membrane surface modification for improved selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.