Abstract

AbstractThe fluid flows and heat transfer characteristics of a tube with internal longitudinal fins were investigated experimentally and numerically. The realizable turbulence model was adopted to simulate the problem, whose results indicate a good agreement with the measured data. Compared with the circular annulus tube, it was shown that the internal longitudinal finned tube provides excellent heat transfer performance greater than those of the circular annulus tube, with a great increase of simultaneous pressure drops. Furthermore, there exists a critical Reynolds number, about 1500, when the Reynolds number is less than the critical value, and the Nusselt number of an internal longitudinal finned tube will be smaller than that of a circular annulus tube in laminar flow. On the other hand, the transition Reynolds number for a tube with internal longitudinal fins from laminar to turbulent is greatly decreased due to the existence of internal longitudinal fins. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(2): 57–65, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20147

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.