Abstract

Abstract The intensity and scale of the geostrophically adjusted end state of the convective overturning of a homogeneous rotating ocean of depth H at a latitude where the Coriolis parameter is f, induced by surface buoyancy loss of magnitude B0, are studied by numerical experiment. The experiments are related to observations and laboratory studies of open-ocean deep convection. A numerical model based on the nonhydrostatic Boussinesq equations is used. The grid spacing of the model is small enough that gross aspects of convective plumes themselves can be resolved, yet the domain of integration is sufficiently large to permit study of the influence of plumes on the large scale and geostrophic adjustment of the convected water. Numerical simulations suggest that cooling at the sea surface is offset by buoyancy drawn from depth through the agency of convective plumes. These plumes efficiently mix the water column to generate a dense chimney of fluid, which subsequently breaks up through the mechanism of bar...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.