Abstract

Abstract We study the bifurcation to steady two-dimensional convection with the heat flux prescribed on the fluid boundaries. The fluid is weakly non-Boussinesq on account of a slight temperature dependence of its material properties. Using expansions in the spirit of shallow water theory based on the preference for large horizontal scales in fixed flux convection, we derive an evolution equation for the horizontal structure of convective cells. In the steady state, this reduces to a simple nonlinear ordinary differential equation. When the horizontal scales of the cells exceed a certain critical size, the bifurcation to steady convection is subcritical and the degree of subcriticality increases with increasing cell size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.