Abstract

The onset of dynamo action is investigated within the context of a newly developed low Rossby, low magnetic Prandtl number, convection-driven dynamo model. This multiscale model represents an asymptotically exact form of an α^{2} mean field dynamo model in which the small-scale convection is represented explicitly by finite amplitude, single mode solutions. Both steady and oscillatory convection are considered for a variety of horizontal planforms. The kinetic helicity is observed to be a monotonically increasing function of the Rayleigh number. As a result, very small magnetic Prandtl number dynamos can be found for sufficiently large Rayleigh numbers. All dynamos are found to be oscillatory with an oscillation frequency that increases as the strength of the convection is increased and the magnetic Prandtl number is reduced. Kinematic dynamo action is strongly controlled by the profile of the helicity; single mode solutions which exhibit boundary layer behavior in the helicity show a decrease in the efficiency of dynamo action due to the enhancement of magnetic diffusion in the boundary layer regions. For a given value of the Rayleigh number, lower magnetic Prandtl number dynamos are excited for the case of oscillatory convection in comparison to steady convection. With regard to planetary dynamos, these results suggest that the low magnetic Prandtl number dynamos typical of liquid metals are more easily driven by thermal convection than by compositional convection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.