Abstract

AbstractTors occur in many granitic landscapes and provide opportunities to better understand differential weathering. We assess tor formation in the Cairngorm Mountains, Scotland, by examining correlation of tor location and size with grain size and the spacing of steeply dipping joints. We infer a control on these relationships and explore its potential broader significance for differential weathering and tor formation. We also assess the relationship between the formation of subhorizontal joints in many tors and local topographic shape by evaluating principle surface curvatures from a digital elevation model of the Cairngorms. We then explore the implications of these joints for tor formation. We conclude that the Cairngorm tors have formed in kernels of relatively coarse grained granite. Tor volumes increase with grain size and the spacing of steeply dipping joints. We infer that the steeply dipping joints largely formed during pluton cooling and are more widely spaced in tor kernels because of slower cooling rates. Preferential tor formation in coarser granite with a wider joint spacing that is more easily grusified indicates that joint spacing is a dominant control on differential weathering. Sheet jointing is well developed in tors located on relatively high convex surfaces. This jointing formed after the gross topography of the Cairngorms was established and before tor emergence. The presence of closely spaced (tens of centimeters), subhorizontal sheeting joints in tors indicates that these tors, and similarly sheeted tors elsewhere, formed either after subaerial exposure of bedrock or have progressively emerged from a regolith only a few meters thick.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.