Abstract

Noisy scattering dynamics in the randomly driven Hénon–Heiles system is investigated in the range of initial energies where the motion is unbounded. In this paper we study, with the help of the exit basins and the escape time distributions, how an external perturbation, be it dissipation or periodic forcing with a random phase, can enhance or mitigate the unpredictability of a system that exhibit chaotic scattering. In fact, if basin boundaries have the Wada property, predictability becomes very complicated, since the basin boundaries start to intermingle, what means that there are points of different basins close to each other. The main responsible of this unpredictability is the external forcing with random phase, while the dissipation can recompose the basin boundaries and turn the system more predictable. Therefore, we do the necessary simulations to find out the values of dissipation and external forcing for which the exit basins present the Wada property. Through these numerical simulations, we show that the presence of the Wada basins have a specific relation with the damping, the forcing amplitude and the energy value. Our approach consists on investigating the dynamics of the system in order to gain knowledge able to control the unpredictability due to the Wada basins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.