Abstract
Tissue engineering holds great potential for saving the lives of thousands of organ transplant patients who die each year while waiting for donor organs. However, to successfully fabricate tissues and organs in vitro, methodologies that recreate appropriate extracellular microenvironments to promote tissue regeneration are needed. In this study, we have developed an application of ultrasound standing wave field (USWF) technology to the field of tissue engineering. Acoustic radiation forces associated with USWF were used to noninvasively control the spatial distribution of mammalian cells and cell-bound extracellular matrix proteins within three-dimensional (3-D) collagen-based engineered tissues. Cells were suspended in unpolymerized collagen solutions and were exposed to a continuous wave USWF, generated using a 1 MHz source, for 15 min at room temperature. Collagen polymerization occurred during USWF exposure resulting in the formation of 3-D collagen gels with distinct bands of aggregated cells. The density of cell bands was dependent on both the initial cell concentration and the pressure amplitude of the USWF. Importantly, USWF exposure did not decrease cell viability but rather enhanced cell function. Alignment of cells into loosely clustered, planar cell bands significantly increased levels of cell-mediated collagen gel contraction and collagen fiber reorganization compared with sham-exposed samples with a homogeneous cell distribution. Additionally, the extracellular matrix protein, fibronectin, was localized to cell banded areas by binding the protein to the cell surface prior to USWF exposure. By controlling cell and extracellular organization, this application of USWF technology is a promising approach for engineering tissues in vitro. (E-mail: dalecki@bme.rochester.edu)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.