Abstract

The spin currents generated by thermal gradients through the spin Seebeck effect (SSE) are usually detected by the voltage generated in a normal metal by means of the inverse spin Hall effect. Here, we present a detailed account of an experimental investigation of the action of spin currents due to SSE on the relaxation rate of spin waves. Propagating spin-wave packets with a frequency in the range of 1--2 GHz are launched in film strips of single-crystal yttrium iron garnet, Y${}_{3}$Fe${}_{5}$O${}_{12}$ (YIG) while a thermal gradient is applied across the thickness in the so-called longitudinal SSE configuration. No change in damping is observed in bare YIG films. However, if the YIG film is covered with an ultrathin platinum layer, we observe a striking change in the amplitude of the detected spin-wave pulses. Depending on the sign of the gradient, the spin-wave relaxation rate can be increased or decreased, leading in the latter case to an apparent amplification. The change in the relaxation rate is attributed to the action of a spin current generated in the YIG film by the SSE while the role of the Pt layer is to supply or absorb the flow of spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.