Abstract

Doping or ion substitution is often used as an effective strategy to improve photocatalytic activities of several semiconductors. Most frequently, the dopants provide extra states to increase light absorption, alter the electronic structure, or lower the carrier recombination. This work focuses on ion substitution in Bi2WO6, where the dopants modify band-edge potentials of the catalysts. Specifically, we investigate how the electronegativity (EN) of the dopant could be used to tune the band-edge potentials and how such changes influence the photocatalytic mechanism. Compared to Te that has a lower EN, I lowers the band-edge potentials. While substitutions with both ions enhance Rh B photodegradation and benzylamine photooxidation, the modified band potentials of I-doped Bi2WO6 influence the benzylamine photooxidation pathway, resulting in higher selectivity. Additionally, substitution of I7+ in the Bi2WO6 lattice improves the morphologies, decreases the band-gap energy, and reduces the carrier recombination. As a result, I-doped Bi2WO6 shows almost 3 times higher %conversion while maintaining 100% selectivity in the oxidative coupling of benzylamine. The findings here signify the importance of the choices of dopants on the photocatalytic reactions and would benefit the design of other related materials for such applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.