Abstract

In this paper we design and analyze a measurement feedback $H_{2}$ controller to reduce the wake meandering behind a wind turbine. The control design and analysis proceeds in two steps. First, a linear reduced order model of the turbine is obtained using snapshots from a higher-order nonlinear 2D actuator disk model. The higher-order model includes a disturbance precursor generated to model realistic disturbance and turbulence scales. A measurement feedback $H_{2}$ controller is then designed for the reduced order linear model assuming access to measurements at 8 downstream locations and the disturbance. The downstream measurement points are determined using insights from a static controller designed using full information of the wind field and incoming disturbances. The control performance is evaluated by simulations on the higherorder nonlinear model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.