Abstract

The present paper describes an access to polycrystalline boron nitride fibers from poly[B-(methylamino)borazine]. Solid-state NMR and IR spectroscopies, thermo-analytical experiments, SEM and XRD investigations were applied to provide a comprehensive mechanistic study of the fiber transformation and understand the role played by ammonia during the polymer-to-ceramic conversion. It was shown that a typical melt-spinnable poly[B-(methylamino)borazine] (Tsynthesis = 180 °C) is composed of borazine rings connected via a majority of NCH3 bridges and a small proportion of NB3-containing motifs forming a cross-linked network. In addition, a low proportion of peripheral N(H)CH3 groups, which are present in the starting molecular precursor, B-tri(methylamino)borazine, is identified. The polymer is capable of melting without decomposition in flowing nitrogen to produce high quality green fibers at moderate temperature. A curing process of green fibers in flowing ammonia at 400 °C through transamination and condensation forming cross-linked NB3 motifs in the polymer network is seen as the most appropriate way to retain the fiber integrity during the polymer-to-ceramic conversion. The use of ammonia during the subsequent pyrolysis from 400 to 1000 °C allows the basal unit of the “naphthalenic-type structure” of boron nitride to be established at 1000 °C through important structural rearrangements and the crystallization tendency to be improved during further heating from 1000 to 1800 °C. Finally, incorporation of nitrogen using ammonia allows the production of polycristalline fibers in which the stoichiometry approaches that of BN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.