Abstract
This paper presents a new approach for controlling emotion in symbolic music generation with Monte Carlo Tree Search. We use Monte Carlo Tree Search as a decoding mechanism to steer the probability distribution learned by a language model towards a given emotion. At every step of the decoding process, we use Predictor Upper Confidence for Trees (PUCT) to search for sequences that maximize the average values of emotion and quality as given by an emotion classifier and a discriminator, respectively. We use a language model as PUCT's policy and a combination of the emotion classifier and the discriminator as its value function. To decode the next token in a piece of music, we sample from the distribution of node visits created during the search. We evaluate the quality of the generated samples with respect to human-composed pieces using a set of objective metrics computed directly from the generated samples. We also perform a user study to evaluate how human subjects perceive the generated samples' quality and emotion. We compare PUCT against Stochastic Bi-Objective Beam Search (SBBS) and Conditional Sampling (CS). Results suggest that PUCT outperforms SBBS and CS in almost all metrics of music quality and emotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.