Abstract

Controlling cell morphologies of polymeric foams is an important part of controlling foam properties. In this study, the effects of particle size, particle content, and particle surface chemistry on cell nucleation in nanosilica/polystyrene (PS) composites are investigated. A theoretical hypothesis on the effect of nanoparticle size on cell nucleation in PS matrix foam was examined. The surface chemistry of nanosilica particles was studied by modifying them with Vinyltriethoxysilane (VTES) silane coupling agent. The microcellular porous materials of neat and composite PS were prepared by batch foaming technique (pressure quench) using supercritical carbon dioxide (ScCO2) as a blowing agent. It was found that the size of the pores decreases and the cell density increases with the decrease in nanosilica size and the increase of silica loading. It was also observed that the surface treatment of the nanosilica particles have substantial effect on the decrease of the cell size and the increase of the cell density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.