Abstract

Heteroaromatic ring derivatives with the C C bond conjugated with different five-membered heteroaromatic rings were used to adjust melt reaction of polypropylene (PP). The effect of heteroatoms in the five-membered rings and electron-attracting groups connecting with C C bond on restricting the β-scission of PP macroradicals and promoting the branching reaction between PP and trimethylol propane triacrylate (TMPTA) was studied. From the analysis of the results concerning molecular structures and melt properties, it was found that the electron density of the C C bond determined the reaction rate between PP macroradicals and heteroaromatic ring derivatives. 2-cyano-3-(furan-2-yl)-2-propenoic acid ethyl ester (CFA) and 2-(furan-2-ylmethylene)malononitrile (FN) had C C bonds with lower electron density, therefore they can quickly convert the tertiary PP macroradicals into resonance stabilized macroradicals. As a result, the β-scission of PP macroradicals and the homopolymerisation of TMPTA were restrained to some extent. Modified PP samples containing TMPTA, peroxide and CFA (or FN), which had the lower grafting degree of TMTPA, showed the most obvious change on the relaxation behaviour of polymer chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.