Abstract

BackgroundThere is a need for alternative treatment options for tremor patients who do not respond well to medications or surgery, either due to side effects or poor efficacy, or that are excluded from surgery. The study aims to evaluate feasibility of a voluntary-driven, speed-controlled tremor rejection approach with individuals with pathological tremor. The suppression approach was investigated using a robotic orthosis for suppression of elbow tremor. Importantly, the study emphasizes the performance in relation to the voluntary motion.MethodsNine participants with either Essential Tremor (ET) or Parkinson’s disease (PD) were recruited and tested off medication. The participants performed computerized pursuit tracking tasks following a sinusoid and a random target, both with and without the suppressive orthosis. The impact of the Tremor Suppression Orthosis (TSO) at the tremor and voluntary frequencies was determined by the relative power change calculated from the Power Spectral Density (PSD). Voluntary motion was, in addition, assessed by position and velocity tracking errors.ResultsThe suppressive orthosis resulted in a 94.4% mean power reduction of the tremor (p < 0.001) – a substantial improvement over reports in the literature. As for the impact to the voluntary motion, paired difference tests revealed no statistical effect of the TSO on the relative power change (p = 0.346) and velocity tracking error (p = 0.283). A marginal effect was observed for the position tracking error (p = 0.05). The interaction torque with the robotic orthosis was small (0.62 Nm) when compared to the maximum voluntary torque that can be exerted by adult individuals at the elbow joint.ConclusionsTwo key contributions of this work are first, a recently proposed approach is evaluated with individuals with tremor demonstrating high levels of tremor suppression; second, the impact of the approach to the voluntary motion is analyzed comprehensively, showing limited inhibition. This study also seeks to address a gap in studies with individuals with tremor where the impact of engineering solutions on voluntary motion is unreported. This study demonstrates feasibility of the wearable technology as an effective treatment that removes tremor with limited impediment to intentional motion. The goal for such wearable technology is to help individuals with pathological tremor regain independence in activities affected by the tremor condition. Further investigations are needed to validate the technology.

Highlights

  • Over ten subtypes of disorders associated with pathological tremor have been identified by the medical community [1] of which Essential Tremor (ET) and Parkinson’s Disease (PD) are considered the most pervasive

  • A large percentage, some estimates are as high as 60%, of those affected by tremor experience disability in their activities of daily living [5, 6], and more than a quarter struggle to find relief through conventional treatments [7]

  • Treatment with pharmacotherapy can be challenging as individual responses vary widely; a typical scenario is that a given medication is partially efficacious at low dosages, but increasing dosage results in a trade-off between efficacy and associated side effects [8]

Read more

Summary

Introduction

Over ten subtypes of disorders associated with pathological tremor have been identified by the medical community [1] of which Essential Tremor (ET) and Parkinson’s Disease (PD) are considered the most pervasive. Individuals with a disabling or medication refractory tremor, may have the option for one of several surgical procedures in the form of Deep Brain Stimulation (DBS), lesioning techniques such as γ knife radiosurgery (invasive), and magnetic resonance-guided focused ultrasound (non-invasive) [9, 10]. About 70–90% of DBS patients experience reduction of tremor that can range from 60 to 90% [8, 13]. There is a need for alternative treatment options for tremor patients who do not respond well to medications or surgery, either due to side effects or poor efficacy, or that are excluded from surgery. The study aims to evaluate feasibility of a voluntary-driven, speed-controlled tremor rejection approach with individuals with pathological tremor. The study emphasizes the performance in relation to the voluntary motion

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.