Abstract

Herein, nickel carbide (Ni3C) nanoparticles were controlled synthesized by decomposing nickel acetylacetonate in oleylamine and oleic acid solvent at a comparatively low temperature of 280 °C. The resultant Ni3C nanoparticles with an average size of 18 nm exhibited large specific surface area and excellent electrical conductivity. And the charge transport during the Li+ intercalation and deintercalation processes can be effectively facilitated by this kind of unique structure. Serving as an anode material in lithium-ion batteries, the Ni3C nanoparticles presented a high stable specific capacity of 390.1 mAh g−1 during 100 cycles at a current density of 0.1 A g−1 and excellent rate performance (e.g. 152.1 mAh g−1 at 5 A g−1). This phenomenon attributed to the advantages of the high intrinsic electrical conductivity and chemical stability of Ni3C. The effective nanostructure of transition metal carbides provides a promising approach to synthesis stable electrode materials for energy and environmental related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.