Abstract

Structurally controlled high-molecular-weight (HMW) polystyrenes (PSts) and block copolymers consisting of HMW PSt segments were successfully synthesized by emulsion organotellurium-mediated radical polymerization (TERP). The hydrophilicity of the organotellurium group of TERP chain transfer agents (CTAs) was important for success, and CTAs 1b and 1c with di- and tetraethylene glycol units were suitable. By using 1b and 1c and using hexadecyltrimethylammonium bromide (CTAB) as the surfactant, PSts with MWs over 1 million and with low dispersity (Đ < 1.6) were synthesized with >96% monomer conversion. Because of the high monomer conversion, high end-group fidelity, and rapid monomer diffusion to polymer particles, HMW block copolymers with low dispersity were successfully synthesized by adding a second monomer after converting the first monomer without isolating the macroinitiators. Despite recent developments in reversible-deactivation radical polymerization (RDRP), the synthesis of HMW polymers, particularly PSts and block copolymers, has been a formidable challenge. This method provides a valuable route for fabricating polymer materials based on HMW PSts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.