Abstract

A ternary nanocomposite of Fe3O4@SnO2/reduced graphene oxide (RGO) with different contents of SnO2 nanoparticles was synthesized by a simple and efficient three-step method. The transmission electron microscopy and field emission scanning electron microscopy characterization display that plenty of Fe3O4@SnO2 core–shell structure nanoparticles are well distributed on the surface of RGO sheets. The X-ray diffractograms show that the products consist of highly crystallized cubic Fe3O4, tetragonal SnO2 and disorderedly stacked RGO sheets. The magnetic hysteresis measurement reveals the ferromagnetic behavior of the products at room temperature. The microwave absorption properties of paraffin containing 50wt% products were investigated at room temperature in the frequency range of 2–18GHz by a vector network analyzer. The electromagnetic data show that the maximum reflection loss is −45.5dB and −29.5dB for Fe3O4@SnO2/RGO-1 and Fe3O4@SnO2/RGO-2 nanocomposite, respectively. Meanwhile, the reflection loss less than −10dB is up to 14.4GHz and 13.8GHz for Fe3O4@SnO2/RGO-1 and Fe3O4@SnO2/RGO-2 nanocomposite, respectively. It is believed that such nanocomposite could be used as promising microwave absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.