Abstract

Mesoscopically ordered silicate−surfactant composite materials of the M41S type synthesized in the presence of a swollen agent have been characterized by in situ and ex situ X-ray diffraction analysis. The key feature of the room-temperature synthesis is the use of a mixture of cationic and anionic surfactants as structure-directing agents. The lower interfacial charge density of the mixed surfactant aggregates stabilizes structures of lower interfacial curvature and therefore facilitates a more controlled solubilization of organic swelling agents. An increased solubilization capacity of the catanionic surfactant−silicate mesophase was observed close to an anionic/cationic surfactant ratio corresponding to a transition to the lamellar phase in the absence of toluene. In the presence of toluene, the catanionic template stabilizes microemulsion droplets that serve as building blocks for the final material. However, a fair amount of organic compound is solubilized in the silica−catanionic surfactant composit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.