Abstract

In this paper, the self-assembling characteristics of a series of L-glutamate-based ammonium amphiphiles are studied in ionic liquids (ILs). These cationic amphiphiles are dispersible in imidazolium ILs with bis((trifluoromethyl)sulfonyl)amide (TFSA) anion. Amphiphiles-containing didodecyl ester or short dioctyl amide groups were molecularly dispersed in conventional 1-butyl-3-methylimidazolium TFSA, whereas they formed bilayer membranes when they were dispersed in polar, ether linkage-introduced IL. Thus, the modification of ILs exerts a crucial influence on amphiphilic self-assembly. Enhancement of the intermolecular interactions of L-glutamate amphiphiles is achieved by introducing multiple amide bonds and longer alkyl chains, which leads to better self-assembling properties. These amide-enriched amphiphiles form fibrous bilayer assemblies even in conventional ILs with low cohesive energy densities. These observations confirm that the formation of bilayer membranes in ILs is a general phenomenon when the solute molecules have the appropriate ‘ionophilic/ionophobic’ nature. Molecular self-assembly in IL is promoted by controlling cohesive energies of amphiphiles and ILs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.