Abstract
AbstractSegmented polyurethane ureas (SPUUs), which are being used in implant devices, were evaluated as drug delivery matrices using theophylline as a model drug without much sacrificing the mechanical properties of films after drug doping. SPUUs were synthesized from aliphatic diisocyanate (lysine methyl ester diisocyante (LDI)), poly(caprolactone) diol with molecular weights 530, 1250 and 2000 and 1,4‐butanediamine. Three series of segmented SPUUs were prepared with various soft segment lengths and were characterized by Fourier transform infrared spectroscopy, dynamic viscoelastic measurements and tensile testing. A single tanδ peak was observed in dynamic viscoelastic measurements, which revealed phase mixing of hard and soft segments. Low elongation at break was observed in case of PCL 2000 based SPUUs, may be due to partial cystallization of PCL segment. The degradation of SPUUs in alkaline solution and in vitro drug release of theophylline in pH 7.4 buffer were also investigated. The drug release behavior from these films were analyzed by the exponent relation Mt/M∞ = ktn, where k and n are constants and Mt/M∞ is the fraction of drug released until time, t. The constant n was found to be close to 0.5 in all samples, which suggests the release of drug from these polymers can be explained by the Fickian diffusion model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.