Abstract

A surface modification technique was developed for the covalent immobilization of poly(vinyl alcohol) (PVA)-heparin hydrogel onto electrically conductive polypyrrole (PPY) film with the objective of achieving controlled release of heparin. First, aldehyde groups were introduced onto PPY film through poly(ethylene glycol) monomethacrylate graft copolymerization and subsequent oxidation in acetic anhydride and dimethyl sulfoxide mixture. Then, the prepared PVA-heparin hydrogel was cast onto the PPY film and covalently immobilized to the film through the reaction between the aldehyde groups on the PPY film and the hydroxyl groups of PVA. X-ray photoelectron spectroscopy was used to characterize the surface-modified film after each stage. The strong attachment of the PVA-heparin layer on the PPY film was confirmed by peel test and scanning electron microscopy. The release behavior of heparin from the substrate with and without electrical stimulation was studied and the experimental results showed that the heparin release rate from the prepared substrate using an electric current of 3.5 mA is twofold higher than that without current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.