Abstract

The explicit construction of non-dispersive flat band modes and the tunability of has been reported for a hierarchical 3-simplex fractal geometry. A single band tight-binding Hamiltonian defined for the deterministic self-similar non-translationally invariant network can give rise to a countably infinity of such self localized eigenstates for which the wave packet gets trapped inside a characteristic cluster of atomic sites. An analytical prescription to detect those dispersionless states has been demonstrated elaborately. The states are localized over clusters of increasing sizes, displaying the existence of a multitude of localization areas. The onset of localization can, in principle, be ‘delayed’ in space by an appropriate choice of the energy of the electron. The tunability of those states leads to the controlled decay of wave function envelope. The impact of perturbation on the bound states has also been discussed. The analogous wave guide model has also been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.