Abstract

The first systematic synthesis of bismuth oxychloride/bismuth oxybromide/graphitic carbon nitride (BiOxCly/BiOmBrn/g-C3N4) nano-composites used a controlled hydrothermal method. The structure, morphology and characteristic of BiOxCly/BiOmBrn/g-C3N4 photocatalyst were measured by XRD, UV–vis-DRS, FT-IR, FE-TEM, FE-SEM-EDS, PL, BET, HR-XPS and EPR. Under visible light irradiation, the photodegradation activity was evaluated for the decolorization of crystal violet (CV) and 2-hydroxybenzoic acid (2-HBA) in aqueous solution. The catalytic performance showed that, when using sample BB2C1-4-250-30 wt% g-C3N4 composite as a photocatalyst, the best reaction-rate-constant (k) was 0.071 h−1. It was 1.5 times higher than the k value of BB2C1-4-250 as a photocatalyst. From the scavenging effect of various scavengers, the results of EPR showed that reactive OH was the main scavenger, while O2−, h+ and 1O2 were the second scavenger in CV degradation. In this study, a possible photodegradation mechanism was proposed and discussed. In this work, our method of BiOxCly/BiOmBrn/g-C3N4 preparation could be used for future mass production and the BiOxCly/BiOmBrn/g-C3N4 composite materials could be applied to the environmental pollution control in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.