Abstract

The reaction‐bonded aluminum oxide (RBAO) process is an attractive alternative to conventional processing of ceramics, because of advantages such as lower costs, enhanced green machinability, near‐net‐shape forming, and broad microstructural variability. However, various problems are still encountered in the production of RBAO ceramics. Part I of the paper presented model predictions that may allow for the controlled firing of RBAO ceramics. The current work investigates the reaction behavior of RBAO ceramics under the model‐predicted conditions (i.e., for varying oxygen content, heat loss, heating cycles, and scale) via thermogravimetry, differential thermal analysis, and analysis of samples that have been fired in a box furnace. By controlling the reaction, one can produce large, crack‐free RBAO ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.