Abstract

Pharmaceutical treatments are critical for the acute and subacute phases of spinal cord injury (SCI) and significantly impact patients' prognoses. However, there is a lack of a precise, multitemporal, integrated drug delivery system for medications administered in both phases. In this study, we prepare a hybrid polylysine-based hydrogel (PBHEVs@AGN) comprising short-term release of pH-responsive aminoguanidine nanoparticles (AGN) and sustained release of extracellular vesicles (EVs) for synergistic SCI treatment. When AGN is exposed to the acidic environment at the injury site, it quickly diffuses out of the hydrogel and releases the majority of the aminoguanidine within 24 h, reducing oxidative stress in lesion tissues. Enriched EVs are gradually released from the hydrogel and remain in the tissue for weeks, providing a long-term anti-inflammatory effect and further ensuring axonal regeneration. Fast-releasing aminoguanidine can cooperate with slow-release EVs to treat SCI more effectively by reducing the production of proinflammatory cytokines and blocking the TLR4/Myd88/NF-κB inflammatory pathway, creating a sustained anti-inflammatory microenvironment for SCI recovery. Our in vivo experiments demonstrate that PBHEVs@AGN reduces the occurrence of scar tissue, encourages remyelination, and speeds up axonal regeneration. Herein, this multi-drug delivery system, which combines the acute release of aminoguanidine and the sustained release of EVs is highly effective for synergistically managing the challenging pathological processes after SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.