Abstract
The application of voltage noise with the same statistical properties as fundamental thermal noise controllably amplified the Brownian motion of $\ensuremath{\lambda}$ DNA molecules suspended in solution inside a nanoslit. We analyze the trajectories of single molecules and find that their self-diffusivity in the direction of the applied electric field increases in proportion with the variance of the voltage noise. The highest effective diffusivity achieved corresponds to an effective temperature of 5300 K. However, unlike thermal noise, the voltage noise causes correlated fluctuations of different molecules and their segments. This technique unlocks a previously inaccessible effective temperature regime for studies and applications of noise-dependent phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.