Abstract

In this work, a high-efficiency controllable three-dimensional (3D) DNA nanomachine (CDNM) was reasonably developed by regulating the diameter of the core and the length of the DNAzyme cantilever, which acquired greater amplification efficiency and speedier walking rate than traditional 3D DNA nanomachines with gold nanoparticles as the cores and DNAzymes as the walking arms. Significantly, once the target miRNA-21 existed, a large number of silent DNAzymes on the CDNM could be activated by enzyme-free-target-recycling amplification (EFTRA) to achieve fast cleavage and walking on the biosensor surface under the interaction of Mg2+. Impressively, when the diameter of the core was 40 nm and the length of the DNAzyme cantilever was 5 nm (15 bp), the CDNM could complete the reaction process in 60 min that was at least twice shorter than those of conventional DNA nanomachines. Moreover, the designed electrochemical biosensor successfully detected target miRNA-21 at an ultrasensitive level with a wide response range (100 aM to 1 nM) and a low detection limit (33.1 aM). Therefore, the developed CDNM provides a new idea for exploring functional DNA nanomachines in the field of biosensing for applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.