Abstract

Pseudocapacitance has been confirmed to significantly improve the rate capability and cycling durability of electrode materials. However, rational design and controllable synthesis of intercalation pseudocapacitive materials for sodium-ion batteries (SIBs) still remain greatly challenging. Herein, a core-shell TiO2-based anode composed of S-, Co-, and N-doped amorphous TiO2/C framework cores and ultrathin anatase TiO2 nanosheet shells (SCN-TC@UT) was synthesized using Ti-based metal-organic frameworks (Ti-MOFs) as self-sacrificing templates coupled with a solvothermal sulfidation process. Thanks to heteroatom doping, integration of carbon species, and 2D nanosheet coating, the kinetic properties of SCN-TC@UT have been significantly improved. As a consequence, the anode achieves ultrahigh capacitive contributions up to 90.9 and 96.3% of the total capacity at scan rates of 5 and 10 mV s-1 and delivers unprecedented capacities of 211, 201, and 100 mA h g-1 at 1, 5, and 30 C (1 C=335 mA g-1) for over 800, 2000, and 18,000 cycles, respectively. Even at an ultrahigh rate of 50 C, the anode can still deliver a capacity of 108 mA h g-1. This work demonstrates the most efficient TiO2-based anode ever reported for SIBs and holds great potential in directing the development of amorphous materials for intercalation pseudocapacitance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.