Abstract

In the view of their ability to be uptaken by cells, colloidal particles can exert diverse physiological effects and are promising vehicles for the intracellular delivery of biologically active substances. Given that the modulation of biomaterial interfaces greatly facilitates the prediction and control of the corresponding cellular responses, the interfacial behavior of hydrophobic dye-modified gold (Au) nanoclusters (Au NCs) is rationally designed to develop Au NC-containing emulsions and control their biointerfacial interactions with cell membranes. The observed biological performance is indicative of a physical penetration mechanism. The amphiphilic Au NCs decrease the interfacial energy of two immiscible liquids and hinder droplet coalescence to facilitate the formation of emulsions thermodynamically stabilized by dipole-dipole and hydrophobic interactions. Moreover, the amphiphilic Au NCs are localized on the emulsion droplet surface and form segregated interfacial microdomains that adapt to the membrane structure and facilitate the traverse of the emulsions across the cell membrane via direct penetration. Fast penetration coupled with excellent photophysical performance endows the emulsions with multifluorescence tracing and efficient photothermal killing capabilities. The successful change of the interaction mode between NCs and biological objects and the provision of a universal formulation to modulate biointerfacial interactions are expected to inspire new bioapplications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.