Abstract

Despite its potential advantages for fMRI analysis, fuzzy C-means (FCM) clustering suffers from limitations such as the need for a priori knowledge of the number of clusters, and unknown statistical significance and instability of the results. We propose a randomization-based method to control the false positive rate and estimate statistical significance of the FCM results. Using this novel approach, we develop an fMRI activation detection method. The ability of the method in controlling the false positive rate is shown by analysis of false positives in activation maps of resting-state fMRI data. Controlling the false positive rate in FCM allows comparison of different fuzzy clustering methods, using different feature spaces, to other fMRI detection methods. In this paper, using simulation and real fMRI data, we compare a novel feature space that takes the variability of the hemodynamic response function into account (HRF-based feature space) to the conventional cross-correlation analysis and FCM using the cross-correlation feature space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.