Abstract

Ultrahigh-quality (Q) factor microresonators have a lot of applications in the photonics domain ranging from low-threshold nonlinear optics to integrated optical sensors. Glass-based whispering gallery mode (WGM) microresonators are easy to produce by melting techniques, however they suffer from surface contamination which limits their long-term quality factor to a few 108. Here we show that an optical gain provided by erbium ions can compensate for residual losses. Moreover it is possible to control the coupling regime of an ultrahigh Q-factor three port microresonator from undercoupling to spectral selective amplification by changing the pumping rate. The optical characterization method is based on frequency-swept cavity-ring-down-spectroscopy. This method allows the transmission and dispersive properties of perfectly transparent microresonators and intrinsic finesses up to 4.0 × 107 to be measured. Finally we characterize a critically coupled fluoride glass WGM microresonator with a diameter of 220 μm and a loaded Q-factor of 5.3 × 109 is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.