Abstract

AbstractVast wastage of pesticides has caused significant environmental pollution and economic loss, which occurs in any step during the entire process of pesticide application. However, the existing strategies for controlling pesticide losses are step specific. Here, a comprehensive strategy to substantively improve pesticide efficiency on the basis of precise designs from beginning to end is developed. A water‐based coacervate with synthesized imine‐based dynamic covalent trimeric surfactants to synergistically control encapsulation, deposition, retention, and release of pesticides on water‐repellent plants is constructed. The coacervate consists of nanosized networks and abundant tightly bonded water, leading to effective encapsulation of hydrophilic/hydrophobic pesticides. Meanwhile, the network‐like microstructure entangles with the micro/nanostructures of superhydrophobic surface, ensuring complete deposition on superhydrophobic plant surface after high‐speed impact and inhibition of wind/rainwater erosion. Moreover, the CO2‐induced degradative surfactant coacervate determines the precise pesticide release. The dynamic coacervate as an innovative pesticide formula provides a prospective way for pesticide application, and is expected to promote productive and sustainable agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.