Abstract

Hybrid-excited permanent magnet (PM) machines utilise the coordinated operation between the PM and the field excitation current. To enhance the effectiveness of the field excitation current, iron flux bridges are applied to hybrid-excited switched-flux PM machines. This study proposes a new control strategy in which the d-axis current is utilised, while the field excitation current is controlled towards zero rather than negative in the flux-weakening mode. These reference currents are determined by the voltage error regulation method. The special magnetic circuit can effectively reduce the d-axis flux-linkage by either partially short-circuiting the PM flux via the iron bridge or removing the field excitation current. The proposed method exhibits advantages, such as highly enhanced torque response in the constant torque region, extended speed range, robustness against machine parameters, and higher efficiency in flux-weakening region. The feasibility of the proposed method is verified by detailed experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.