Abstract

Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user.This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies.As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os – not as independent devices, but as actors within an ecosystem – is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers.Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use.The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user’s neuromusculoskeletal system and are practical for use in locomotive ADL.

Highlights

  • An exciting revolution is underway in the fields of rehabilitation and assistive robotics, where technologies are being developed to actively aid or restore legged locomotion to individuals suffering from muscular impairments or weakness, neurologic injury, or amputations affecting the lower limbs

  • The inherent shortcomings of these devices are their inability to generate mechanical power, their failure to autonomously adapt to the user’s changing needs, and the lack of sensory feedback that they provide to the user regarding the states of the limb and of the device

  • We present a general framework for the classification and design of controllers for portable lower limb prosthetic and orthotic (P/O) devices

Read more

Summary

Introduction

An exciting revolution is underway in the fields of rehabilitation and assistive robotics, where technologies are being developed to actively aid or restore legged locomotion to individuals suffering from muscular impairments or weakness, neurologic injury, or amputations affecting the lower limbs.Examples of energetically passive prosthetic and orthotic (P/O) devices date back thousands of years and have been used with varying levels of success [1]. Intelligent and portable actuated P/Os have the potential to dramatically improve the mobility, and quality of life, of people with locomotive impairments As such devices begin to approach the power output, efficiency, and versatility of the limbs that they assist or replace, the end-users will be (re)enabled to partake in activities of daily living (ADLs) that require net-positive energetic output (e.g. stair climbing, running, jumping) in the same ways that an able-bodied counterpart would. Relative to their passive counterparts, active P/Os have the potential to increase self-selected gait speed while reducing metabolic expenditure [2,3,4]. Such devices may increase gait symmetry and reduce wear-andtear on the user’s unaffected joints that could otherwise arise due to compensatory movements

Objectives
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.